First Preparation and Reactions of S,S-Diaryl-S-fluorothiazynes, Ar₂SF(N)

Toshiaki YOSHIMURA,* Hiroshi KITA, Kyu TAKEUCHI, Eiichi TAKATA, Kiyoshi HASEGAWA,
Choichiro SHIMASAKI, and Eiichi TSUKURIMICHI

Department of Chemical and Biochemical Engineering, Faculty of Engineering,
Toyama University, Gofuku, Toyama 930

S,S-Diaryl-S-fluorothiazynes, $Ar_2SF(\equiv N)$, were prepared by the reaction of S,S-diaryl-N-bromosulfilimines with tetrabutylammonium fluoride. The thiazyne structure was assigned by the spectral data, physical properties, and is consistent with reactions with sodium alkoxides and primary amines. The thiazyne prepared previously by Clifford et al. is doubtful.

Thiazynes¹⁾ $R^{-\frac{1}{5}-R}$ bearing an S \equiv N triple bond are little known and investigations for their structures and reactions are very interesting. Only a few examples of inorganic compounds bearing SN triple bond have been known, thiazyl trifluoride $(F_3SN)^2$ and thiazyl fluoride $(FSN)^2$, while there are few examples of organic compounds, e.g., S,S-diphenyl-S-fluorothiazyne Ph₂SF(N) (4'a) was claimed to be prepared by A. F. Clifford et al. in 1978,³⁾ though it was not purified. We reported recently that the alkaline hydrolysis of S,S-diphenyl-N-bromosulfilimine (1a) in aqueous methanol affords S,S-diphenyl-S-methoxythiazyne,⁴⁾ Ph₂S(OMe)(N) (2a), and that the further hydrolysis of 2a gives S,S-diphenylsulfoximine, Ph₂S(O)(NH) (3a), quantitatively.⁴⁾ We also reported that the methoxythiazyne 2a is a good methylating reagent of thiols and the reaction mechanism was investigated kinetically.⁵⁾ Among these thiazynes, the S-fluorothiazyne is especially expected to be a useful reagent to prepare a variety of thiazynes and other SN compounds. Therefore, we tried to prepare the S-fluorothiazyne 4'a by an alternative method, since the Clifford's method using F₃SN is dangerous.

N-Bromosulfilimine 1a was allowed to react with tetrabutylammonium fluoride (TBAF) at 0 °C in dry THF in the presence of molecular sieves 4A. After completion of the reaction, the solution was diluted with excess water, extracted with chloroform and then the chloroform layer was washed with water repeatedly.

Chloroform was evaporated to give a compound (4a) in 90% yield, which was recrystallized from benzene under cooling (mp 66 °C). The compound 4a gave a satisfactory elemental analysis for S,S-diphenyl-S-fluorothiazyne (Found: C, 65.56; H, 4.69; N, 6.15%. Calcd for $C_{12}H_{10}FNS$: C, 65.73; H, 4.60; N, 6.39%). ¹³C NMR (CDCl₃, δ =126.3, 128.9, 132.8, 143.6 ppm) depicted only the phenyl group carbons. Pyrolysis of the compound 4a at 100 °C gave quantitatively diphenyl sulfide. Similarly the mass spectrum showed only the pattern of the sulfide. The compound 4a is hydrolyzed under both acidic (55%-H₂SO₄ in aq. MeOH) and alkaline conditions (4%-NaOH in aq. MeOH) to give S,S-diphenylsulfoximine quantitatively. ¹⁵N NMR was observed at 66.1 ppm downfield from NH₃ in CDCl₃, though no ¹⁵N-¹⁹F coupling was observed which may be caused by fast exchange of fluorine atom with contaminated HF or TBAF, because addition of HF to F₃SN is known to form F₅SNH₂6) reversibly and thus reversible addition of HF to 4a is possible.

However the spectral data of the synthesized 4a are completely different from the Clifford's compound 4'a. The ¹⁹F NMR of 4a was observed at 86.6 ppm (downfield from CFCl₃ in CDCl₃) but that of 4'a at 102.9 ppm.³⁾ A possible isomer, S,S-diphenyl-N-fluorosulfilimine, Ph₂S→NF, is unlikely for the present compound 4a because of the following reasons. The splitting of ¹H NMR of the phenyl group of 4a (ortho: 7.85-8.00 ppm, meta and para: 7.30-7.63 ppm) is similar to such sulfone type compounds as the methoxythiazyne 2a (ortho: 7.80-8.05 ppm, meta and para: 7.35-7.60 ppm) and S,S-diphenyl sulfone (ortho: 7.80-8.05 ppm, meta and para: 7.31-7.60 ppm) rather than sulfilimine type compounds, e.g., S,S-diphenyl-N-chlorosulfilimine (7.52 ppm)¹⁰⁾ and S,S-diphenylsulfilimine (7.20-7.70 ppm),¹¹⁾ while the splitting of the phenyl group for 4'a (7.15-7.95 ppm) is not clear. The IR SN stretching band of 4a (1361 cm⁻¹) is higher than those of S,S-diphenyl-N-chlorosulfilimine (860 cm⁻¹),¹⁰⁾ S,S-diphenyl-N-bromosulfilimine (860 cm⁻¹)¹⁰⁾ or S,S-diphenylsulfilimine (940 cm⁻¹)¹¹⁾ but close to those of 2a (1340 cm⁻¹)⁴⁾ or thiazyl trifluoride (1524 cm⁻¹),¹²⁾ though the band of 4'a is similar (1428 cm⁻¹).³⁾ These spectral data suggest that our compound (4a) does not have a sulfilimine structure but a thiazyne Ph₂SF(N). The substituted S,S-diphenyl-S-fluorothiazynes (4a-e) were also prepared and the results are shown in Table 1.

In order to further ascertain the structure, reactions of the S-fluorothiazyne 4a with some nucleophiles were investigated. Reactions of 4a with sodium alkoxides in alcohols gave S,S-diphenyl-S-alkoxythiazynes, Ph₂S(OR¹)(N) (5a) in moderate yields (27-51%) together with sulfoximine 3a as shown in Table 2. S,S-Diphenyl-S-methoxythiazyne (5a-Me) and -S-ethoxythiazyne (5a-Et) were identical with those obtained

Chemistry Letters, 1992

	Conditions			Yield	Mp	
	x	1: TBAF	Time/h		°C	
a	H	1:2	3	90	66.0-66.5	
b	p-Cl	1:2	50	98	117-118	
c	p-Cl p-Me	1:2	2	99	oil	
d	o-Me	1:2	4	90	oil	
e	p-NO ₂	1:2	1	99	77	

Table 1. Preparation of S,S-Diaryl-S-fluorothiazynes XC₆H₄PhSF(N) (4a-e)

previously by the alkaline hydrolysis of N-bromosulfilimine 1a in aqueous alcohol.⁴⁾ This method is better than the previous one for the preparation of S,S-diaryl-S-alkoxythiazynes since more kinds of alkoxythiazynes can be obtained.

Furthermore, 4a was allowed to react with primary amines as shown in Table 3. Both alkyl and aryl amines gave the corresponding sulfonediimines Ph₂S(NR²)(NH) (6a). In comparison with the method for preparation of diarylsulfonediimines from N-halosulfilimines,⁹⁾ the present reaction has a characteristic to give N-arylsulfonediimines. Since only a few methods are known for preparation of sulfonediimines,⁷⁻⁹⁾ S-fluorothiazynes 4 are expected to be valuable reagents. These reactions also confirm indirectly that the structure of 4 is not the N-fluorosulfilimine but is the thiazyne. Further work on these and related reactions is now under way in these laboratories.

Table 2. Reactions of S,S-Diphenyl-S-fluorothiazyne (4a) with Sodium Alkoxides

Conditions				Yields/%a)	
[R ¹ ONa]/[4a]	Temp/°C	Time/min	Solvent	3a	5a
3	r.t.	1	MeOH	24	51
3	r.t.	1	EtOH	20	46
3	r.t.	1	n-PrOH	24	48
3	r.t.	1	i-PrOH	33	41
3	r.t.	1	n-BuOH	27	27
3	r.t.	1	i-BuOH	32	31
	[R ¹ ONa]/[4a] 3 3 3 3 3 3 3 3	[R ¹ ONa]/[4a] Temp/°C 3 r.t. 3 r.t. 3 r.t. 3 r.t. 3 r.t. 7 r.t. 1 r.t.	[R ¹ ONa]/[4a] Temp/°C Time/min 3 r.t. 1 7 r.t. 1 7 r.t. 1	R ¹ ONa]/[4a] Temp/°C Time/min Solvent 3	[R¹ONa]/[4a] Temp/°C Time/min Solvent 3a 3 r.t. 1 MeOH 24 3 r.t. 1 EtOH 20 3 r.t. 1 n-PrOH 24 3 r.t. 1 i-PrOH 33 3 r.t. 1 n-BuOH 27

a) Since the separation of **5a** from **3a** is very difficult,⁴⁾ yields were determined by ¹H NMR integral ratio.

Table 3. Reaction of S,S-Diphenyl-S-fluorothiazynes (4a) with Primary Amines

R ²	Conditions					Yields/% ^{a)}	
K²	[R ² NH ₂]/[4a]	Temp/°C	Time/h	n Solvent	6a	3a	
H	excess	30	17	MeOH	23	66	
$CH_3(CH_2)_2$	excess	30	16	$CH_3(CH_2)_2NH_2$	71	-	
$CH_3(CH_2)_3$	2	30	14	Et ₂ O	79	-	
Ph 2	excess	30	16	$PhNH_2$	54	-	
m-ClC ₆ H ₄	excess	30	13	m-ClC ₆ H ₄ NH ₂	53	-	
o-MeC ₆ H ₄	excess	30	16	o-MeC ₆ H ₄ NH ₂	37	-	

a) Isolated yield.

References

- 1) The compounds having an SN triple bond are called thiazyl compounds²⁾ like thiazyl trifluoride for F₃SN, but this name is not appropriate for the compounds substituted by carbon groups. Meanwhile, the name "thiazyne" was first used by Clifford et al.³⁾ for Ph₂FSN as diphenylfluorothiazyne.
- 2) O. Glemser and R. Mews, Angew. Chem., 92, 904 (1980). References are cited therein.
- 3) A. F. Clifford, J. L. Howell, and D. L. Wooton, J. Fluorine Chem., 11, 433 (1978).
- 4) T. Yoshimura, E. Tsukurimichi, H. Kita, H. Fujii, and C. Shimasaki, *Tetrahedron Lett.*, **30**, 6339 (1989).
- 5) T. Yoshimura, E. Tsukurimichi, Y. Sugiyama, H. Kita, C. Shimasaki, and K. Hasegawa, *Bull. Chem. Soc. Jpn.*, **64**, 3176 (1991).
- 6) A. F. Clifford and L. C. Duncan, *Inorg. Chem.*, 5, 692 (1970).
- 7) M. Haake, "The Chemistry of S,S-diorgano-Sulfodiimides," in "Topics in Sulfur Chemistry," ed by A. Senning, Georg Thieme Verlag, Stuttgart (1976), p.187.
- 8) N. Furukawa, K. Akutagawa, T. Yoshimura, T. Akasaka, and S. Oae, Synthesis, 1979, 289.
- 9) N. Furukawa, K. Akutagawa, and S. Oae, *Phosphorus and Sulfur*, 20, 1 (1984).
- 10) T. Yoshimura, N. Furukawa, T. Akasaka, and S. Oae, Tetrahedron, 33, 1061 (1977).
- 11) T. Yoshimura, T. Omata, N. Furukawa, and S. Oae, J. Org. Chem., 41, 1728 (1976).
- 12) H. Richert and O. Glemser, Z. Anorg. Allg. Chem., 307, 328 (1961).

(Received April 23, 1992)